Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.463
Filtrar
1.
J Microbiol Immunol Infect ; 56(2): 257-266, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36127231

RESUMO

BACKGROUND: The exploration of virology knowledge was limited by the optical technology for the observation of virus. Previously, a three-dimensional multi-resolution real-time microscope system (3D-MRM) was developed to observe the uptake of HIV-1-tat peptide-modified nanoparticles in cell membrane. In this study, we labeled HIV-1 virus-like particles (VLPs) with passivated giant quantum dots (gQDs) and recorded their interactive trajectories with human Jurkat CD4 cells through 3D-MRM. METHODS: The labeled of gQDs of the HIV-1 VLPs in sucrose-gradient purified viral lysates was first confirmed by Cryo-electronic microscopy and Western blot assay. After the infection with CD4 cells, the gQD-labeled VLPs were visualized and their extracellular and intracellular trajectories were recorded by 3D-MRM. RESULTS: A total of 208 prime trajectories was identified and classified into three distinct patterns: cell-free random diffusion pattern, directional movement pattern and cell-associated movement pattern, with distributions and mean durations were 72.6%/87.6 s, 9.1%/402.7 s and 18.3%/68.7 s, respectively. Further analysis of the spatial-temporal relationship between VLP trajectories and CD4 cells revealed the three stages of interactions: (1) cell-associated (extracellular) diffusion stage, (2) cell membrane surfing stage and (3) intracellular directional movement stage. CONCLUSION: A complete trajectory of HIV-1 VLP interacting with CD4 cells was presented in animation. This encapsulating method could increase the accuracy for the observation of HIV-1-CD4 cell interaction in real time and three dimensions.


Assuntos
Linfócitos T CD4-Positivos , Membrana Celular , HIV-1 , Microscopia Eletrônica , Pontos Quânticos , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD4-Positivos/ultraestrutura , Linfócitos T CD4-Positivos/virologia , HIV-1/fisiologia , HIV-1/ultraestrutura , Imageamento Tridimensional/métodos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/fisiologia , Peptídeos Penetradores de Células/fisiologia , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Membrana Celular/virologia , Nanopartículas/ultraestrutura , Nanopartículas/virologia , Partículas Artificiais Semelhantes a Vírus/fisiologia , Microscopia Eletrônica/métodos
2.
J Cell Biol ; 222(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36469001

RESUMO

Volume electron microscopy is an important imaging modality in contemporary cell biology. Identification of intracellular structures is a laborious process limiting the effective use of this potentially powerful tool. We resolved this bottleneck with automated segmentation of intracellular substructures in electron microscopy (ASEM), a new pipeline to train a convolutional neural network to detect structures of a wide range in size and complexity. We obtained dedicated models for each structure based on a small number of sparsely annotated ground truth images from only one or two cells. Model generalization was improved with a rapid, computationally effective strategy to refine a trained model by including a few additional annotations. We identified mitochondria, Golgi apparatus, endoplasmic reticulum, nuclear pore complexes, caveolae, clathrin-coated pits, and vesicles imaged by focused ion beam scanning electron microscopy. We uncovered a wide range of membrane-nuclear pore diameters within a single cell and derived morphological metrics from clathrin-coated pits and vesicles, consistent with the classical constant-growth assembly model.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia Eletrônica , Redes Neurais de Computação , Clatrina , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/ultraestrutura , Microscopia Eletrônica/métodos , Mitocôndrias/ultraestrutura , Poro Nuclear/ultraestrutura , Cavéolas/ultraestrutura , Biologia Celular
4.
J Mol Biol ; 434(9): 167520, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245498

RESUMO

Multivalent intrinsically disordered protein (IDP) complexes are prevalent in biology and act in regulation of diverse processes, including transcription, signaling events, and the assembly and disassembly of complex macromolecular architectures. These systems pose significant challenges to structural investigation, due to continuum dynamics imparted by the IDP and compositional heterogeneity resulting from characteristic low-affinity interactions. Here, we developed a modular pipeline for automated single-particle electron microscopy (EM) distribution analysis of common but relatively understudied semi-ordered systems: 'beads-on-a-string' assemblies, composed of IDPs bound at multivalent sites to the ubiquitous ∼20 kDa cross-linking hub protein LC8. This approach quantifies conformational geometries and compositional heterogeneity on a single-particle basis, and statistically corrects spurious observations arising from random proximity of bound and unbound LC8. The statistical correction is generically applicable to oligomer characterization and not specific to our pipeline. Following validation, the approach was applied to the nuclear pore IDP Nup159 and the transcription factor ASCIZ. This analysis unveiled significant compositional and conformational diversity in both systems that could not be obtained from ensemble single particle EM class-averaging strategies, and new insights for exploring how these architectural properties might contribute to their physiological roles in supramolecular assembly and transcriptional regulation. We expect that this approach may be adopted to many other intrinsically disordered systems that have evaded traditional methods of structural characterization.


Assuntos
Proteínas Intrinsicamente Desordenadas , Dineínas do Citoplasma/química , Proteínas Intrinsicamente Desordenadas/química , Microscopia Eletrônica/métodos , Complexo de Proteínas Formadoras de Poros Nucleares/química , Conformação Proteica , Imagem Individual de Molécula , Fatores de Transcrição/química
5.
Sci Rep ; 12(1): 2556, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169268

RESUMO

This study was conducted to investigate the ultrastructure of a unique structures at the anterior side of the endothelium of the posterior peripheral cornea and compare their inner fibers to those of the limbus and sclera. The unique structures at the anterior side of endothelium was referred as a pre-endothelial (PENL) structures in the present manuscript. Ten anonymous-donor human corneoscleral rims (leftover after corneal transplants) were processed for electron microscopy. Semi-thin sections were examined using an Olympus BX53 microscope, and ultrathin sections were studied using a JOEL 1400 transmission electron microscope. A unique PENL structures was identified at the posterior peripheral cornea at a radial distance of approximately 70-638 µm, from the endpoint of Descemet's membrane. The PENL thinned out gradually and disappeared in the center. The contained an electron-dense sheath with periodic structures (narrow-spacing fibers), wide-spacing fibers, and numerous microfibrils. Typical elastic fibers were present in the sclera and limbus but were not observed in the PENL. This study revealed the existence of a new acellular PENL, containing unique fibrillar structures that were unseen in the corneal stroma. From the evidence describe in this paper we therefore suggest that PENL is a distinct morphological structure present at the corneal periphery.


Assuntos
Córnea/ultraestrutura , Substância Própria/ultraestrutura , Endotélio/ultraestrutura , Microscopia Eletrônica/métodos , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Adulto Jovem
6.
Biochem Biophys Res Commun ; 595: 69-75, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35101665

RESUMO

OBJECTIVE: The molecular mechanism of in hyperlipidemia-induced renal injury has not been elucidated. Angiogenin-like protein 4 (ANGPTL4) is a key regulator of lipid metabolism. The role of ANGPTL4 hyperlipidemia-induced renal injury has not been reported. METHODS: Wild type C57 mice and gene angptl4 knockout mice were fed with 60% high fat diet or normal diet respectively. The serum lipid, urinary albumin and renal pathology were tested at the 9th, 13th, 17th and 21st week with high fat diet. RESULTS: Elevated blood lipids in the wild-type mice with high-fat diet were found at 9th week. At the 17th week, the level of urinary albumin in high-fat fed wild type mice were significantly higher than which with normal diet, correspondingly, segmental fusion of podocyte foot process in kidney could be observed in these hyperlipidemia mice. IHC showed that the expression of ANGPTL4 in glomeruli of high-fat fed wild type mice began significant elevated since the 9th week. When given high fat diet, compared to the wild type, the gene angptl4 knockout mice showed significantly alleviated the levels of hyperlipidemia, proteinuria and effacement of podocyte foot process. Finally, the expression of ACTN4 showed remarkably lower in glomeruli podocyte of wild type mice fed high fat diet than that of wild type mice with normal diet at each time-point (P < 0.01). Differently, the expression of ACTN4 in gene angptl4 knockout mice did not happen significantly weaken when given the same dose of high fat diet. CONCLUSION: ANGPTL4 could play a role in hyperlipidemic-induced renal injury via down-regulating the expression of ACTN4 in kidney podocyte.


Assuntos
Actinina/genética , Proteína 4 Semelhante a Angiopoietina/genética , Regulação para Baixo , Hiperlipidemias/complicações , Nefropatias/genética , Actinina/metabolismo , Proteína 4 Semelhante a Angiopoietina/metabolismo , Animais , Dieta Hiperlipídica , Imuno-Histoquímica/métodos , Nefropatias/etiologia , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/ultraestrutura , Lipídeos/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica/métodos , Proteinúria/urina
7.
Viruses ; 14(2)2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35215794

RESUMO

The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted public health and the world economy and fueled a worldwide race to approve therapeutic and prophylactic agents, but so far there are no specific antiviral drugs. Understanding the biology of the virus is the first step in structuring strategies to combat it, and in this context several studies have been conducted with the aim of understanding the replication mechanism of SARS-CoV-2 in vitro systems. In this work, studies using transmission and scanning electron microscopy and 3D electron microscopy modeling were performed with the goal of characterizing the morphogenesis of SARS-CoV-2 in Vero-E6 cells. Several ultrastructural changes were observed-such as syncytia formation, cytoplasmic membrane projections, lipid droplets accumulation, proliferation of double-membrane vesicles derived from the rough endoplasmic reticulum, and alteration of mitochondria. The entry of the virus into cells occurred through endocytosis. Viral particles were observed attached to the cell membrane and in various cellular compartments, and extrusion of viral progeny took place by exocytosis. These findings allow us to infer that Vero-E6 cells are highly susceptible to SARS-CoV-2 infection as described in the literature and their replication cycle is similar to that described with SARS-CoV and MERS-CoV in vitro models.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Microscopia Eletrônica/métodos , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestrutura , Animais , Linhagem Celular , Chlorocebus aethiops , SARS-CoV-2/química , Células Vero , Internalização do Vírus , Replicação Viral
8.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091471

RESUMO

We report two structures of the human voltage-gated potassium channel (Kv) Kv1.3 in immune cells alone (apo-Kv1.3) and bound to an immunomodulatory drug called dalazatide (dalazatide-Kv1.3). Both the apo-Kv1.3 and dalazatide-Kv1.3 structures are in an activated state based on their depolarized voltage sensor and open inner gate. In apo-Kv1.3, the aromatic residue in the signature sequence (Y447) adopts a position that diverges 11 Å from other K+ channels. The outer pore is significantly rearranged, causing widening of the selectivity filter and perturbation of ion binding within the filter. This conformation is stabilized by a network of intrasubunit hydrogen bonds. In dalazatide-Kv1.3, binding of dalazatide to the channel's outer vestibule narrows the selectivity filter, Y447 occupies a position seen in other K+ channels, and this conformation is stabilized by a network of intersubunit hydrogen bonds. These remarkable rearrangements in the selectivity filter underlie Kv1.3's transition into the drug-blocked state.


Assuntos
Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.3/ultraestrutura , Sequência de Aminoácidos/genética , Sítios de Ligação/fisiologia , Humanos , Ativação do Canal Iônico/fisiologia , Canal de Potássio Kv1.3/efeitos dos fármacos , Potenciais da Membrana , Microscopia Eletrônica/métodos , Modelos Moleculares , Conformação Molecular , Potássio/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio/ultraestrutura , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/ultraestrutura , Alinhamento de Sequência/métodos
9.
Life Sci Alliance ; 5(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34996842

RESUMO

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The positive-sense single-stranded RNA virus contains a single linear RNA segment that serves as a template for transcription and replication, leading to the synthesis of positive and negative-stranded viral RNA (vRNA) in infected cells. Tools to visualize vRNA directly in infected cells are critical to analyze the viral replication cycle, screen for therapeutic molecules, or study infections in human tissue. Here, we report the design, validation, and initial application of FISH probes to visualize positive or negative RNA of SARS-CoV-2 (CoronaFISH). We demonstrate sensitive visualization of vRNA in African green monkey and several human cell lines, in patient samples and human tissue. We further demonstrate the adaptation of CoronaFISH probes to electron microscopy. We provide all required oligonucleotide sequences, source code to design the probes, and a detailed protocol. We hope that CoronaFISH will complement existing techniques for research on SARS-CoV-2 biology and COVID-19 pathophysiology, drug screening, and diagnostics.


Assuntos
COVID-19/diagnóstico , Hibridização in Situ Fluorescente/métodos , RNA Viral/genética , SARS-CoV-2/genética , Replicação Viral/genética , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Antivirais/farmacologia , COVID-19/virologia , Células CACO-2 , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Hibridização In Situ/métodos , Microscopia Eletrônica/métodos , RNA Viral/ultraestrutura , Reprodutibilidade dos Testes , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Sensibilidade e Especificidade , Células Vero , Liberação de Vírus/efeitos dos fármacos , Liberação de Vírus/genética , Liberação de Vírus/fisiologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia , Tratamento Farmacológico da COVID-19
10.
Anal Bioanal Chem ; 414(5): 1857-1865, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35028690

RESUMO

Biothiol detection is of great importance for clinical disease diagnosis. Previous nanozyme-based colorimetric sensors for biothiol detection showed unsatisfactory catalytic activity, which led to a high detection limit. Therefore, developing new nanozymes with the high catalytic activity for biothiol detection is extremely necessary. Recently, single-atom nanozymes (SAzymes) have attracted much attention in biosensing due to their 100% atom utilization and excellent catalytic activity. Most previous works focus on the peroxidase-like activity of Fe-based SAzymes by using unstable and destructive H2O2 as the oxidant. It is essential to develop new SAzymes with high oxidase-like activity for biosensing to break through the limitation. Herein, Co-N-C SAzymes with high oxidase-like activity are explored. Furthermore, Co-N-C SAzymes are used as a biosensor for colorimetric detection of biothiols (GSH/Cys) based on the inhibition of thiols toward the oxidase-like activity of Co-N-C SAzymes, which showed high sensitivity with a low detection limit of 0.07 µM for GSH and 0.06 µM for Cys. Besides, the method showed good reproducibility and high selectivity against other amino acids. This work offers new insights using Co-N-C SAzymes in the biosensing field.


Assuntos
Carbono/química , Cobalto/química , Nitrogênio/química , Compostos de Sulfidrila/análise , Técnicas Biossensoriais , Catálise , Limite de Detecção , Microscopia Eletrônica/métodos , Reprodutibilidade dos Testes , Espectrometria por Raios X
11.
Pharmacol Biochem Behav ; 212: 173294, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34752798

RESUMO

Over the past two decades, opioid abuse has risen especially among women. In both sexes hippocampal neural circuits involved in associative memory formation and encoding of motivational incentives are critically important in the transition from initial drug use to drug abuse/dependence. Opioid circuits, particularly the mossy fiber pathway, are crucial for associative memory processes important for addiction. Our anatomical studies, especially those utilizing electron microscopic immunocytochemistry, have provided unique insight into sex differences in the distribution of opioid peptides and receptors in specific hippocampal circuits and how these distributions are altered following stress and oxycodone-associative learning processes. Here we review the hippocampal opioid system in rodents with respect to ovarian hormones effects and baseline sex differences then sex differences following acute and chronic stress. Next, we review sex differences in the hippocampal opioid system in unstressed and chronically stressed rats following oxycodone conditioned place preference. We show that opioid peptides and receptors are distributed within hippocampal circuits in females with elevated estrogen states in a manner that would enhance sensitivity to endogenous and exogenous opioids. Moreover, chronic stress primes the opioid system in females in a manner that would promote opioid-associative learning processes. In contrast, chronic stress has limited effects on the opioid system in males and reduces its capacity to support opioid-mediated learning processes. Interestingly, acute stress appears to prime males for opioid associative learning. On a broader scale the findings highlighted in this review have important implications in understanding sex differences in opioid drug use and abuse.


Assuntos
Hipocampo/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides/metabolismo , Oxicodona/farmacologia , Receptores Opioides/metabolismo , Estresse Psicológico/metabolismo , Analgésicos Opioides/farmacologia , Animais , Condicionamento Clássico , Feminino , Hipocampo/metabolismo , Masculino , Microscopia Eletrônica/métodos , Neurônios/metabolismo , Peptídeos Opioides/farmacologia , Ratos , Receptores de Estrogênio/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , Caracteres Sexuais
12.
Plant Physiol ; 188(1): 44-55, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34687300

RESUMO

Despite recent progress in our understanding of graft union formation, we still know little about the cellular events underlying the grafting process. This is partially due to the difficulty of reliably targeting the graft interface in electron microscopy to study its ultrastructure and three-dimensional architecture. To overcome this technological bottleneck, we developed a correlative light electron microscopy (CLEM) approach to study the graft interface with high ultrastructural resolution. Grafting hypocotyls of Arabidopsis thaliana lines expressing yellow FP or monomeric red FP in the endoplasmic reticulum (ER) allowed efficient targeting of the grafting interface for examination under light and electron microscopy. To explore the potential of our method to study sub-cellular events at the graft interface, we focused on the formation of secondary plasmodesmata (PD) between the grafted partners. We showed that four classes of PD were formed at the interface and that PD introgression into the cell wall was initiated equally by both partners. Moreover, the success of PD formation appeared not systematic with a third of PD not spanning the cell wall entirely. Characterizing the ultrastructural characteristics of these incomplete PD gives us insights into the process of secondary PD biogenesis. We found that the establishment of successful symplastic connections between the scion and rootstock occurred predominantly in the presence of thin cell walls and ER-plasma membrane tethering. The resolution reached in this work shows that our CLEM method advances the study of biological processes requiring the combination of light and electron microscopy.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/ultraestrutura , Microscopia Eletrônica/métodos , Microscopia/métodos , Transplante de Órgãos , Plasmodesmos/ultraestrutura
13.
J Cutan Pathol ; 49(1): 17-28, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34272741

RESUMO

BACKGROUND: The abundance of publications of COVID-19-induced chilblains has resulted in a confusing situation. METHODS: This is a prospective single-institution study from 15 March to 13 May 2020. Thirty-two patients received PCR nasopharyngeal swabs. Of these, 28 patients had a thoracic CT-scan, 31 patients had blood and urine examinations, 24 patients had skin biopsies including immunohistochemical and direct immunofluorescence studies, and four patients had electron microscopy. RESULTS: COVID-19-induced chilblains are clinically and histopathologically identical to chilblains from other causes. Although intravascular thrombi are sometimes observed, no patient had a systemic coagulopathy or severe clinical course. The exhaustive clinical, radiological, and laboratory work-up in this study ruled-out other primary and secondary causes. Electron microscopy revealed rare, probable viral particles whose core and spikes measured from 120 to 133 nm within endothelium and eccrine glands in two cases. CONCLUSION: This study provides further clinicopathologic evidence of COVID-19-related chilblains. Negative PCR and antibody tests do not rule-out infection. Chilblains represent a good prognosis, occurring later in the disease course. No systemic coagulopathy was identified in any patient. Patients presenting with acral lesions should be isolated, and chilblains should be distinguished from thrombotic lesions (livedo racemosa, retiform purpura, or ischemic acral necrosis).


Assuntos
COVID-19/complicações , COVID-19/diagnóstico , Pérnio/etiologia , Pérnio/patologia , Dedos do Pé/patologia , Adolescente , Adulto , Idoso , Biópsia/métodos , COVID-19/metabolismo , COVID-19/virologia , Pérnio/diagnóstico , Pérnio/virologia , Criança , Diagnóstico Diferencial , Glândulas Écrinas/patologia , Glândulas Écrinas/ultraestrutura , Glândulas Écrinas/virologia , Endotélio/patologia , Endotélio/ultraestrutura , Endotélio/virologia , Feminino , Humanos , Livedo Reticular/patologia , Masculino , Microscopia Eletrônica/métodos , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Púrpura/patologia , SARS-CoV-2/genética , Pele/patologia , Dedos do Pé/virologia , Adulto Jovem
14.
São Paulo; s.n; s.n; 2022. 101 p. tab, graf.
Tese em Português | LILACS | ID: biblio-1437639

RESUMO

A Leucemia Linfoide Aguda (LLA) é um câncer de maior incidência em crianças, e tem a Lasparaginase (ASNase) como fármaco amplamente utilizado no tratamento dos afetados. A ASNase catalisa a hidrólise do aminoácido L-asparagina (Asn), presente na corrente sanguínea, a ausência do aminoácido no meio extracelular leva à morte células leucêmicas, que necessitam deste aminoácido para as funções celulares. Fatores envolvendo a eficiência do tratamento com ASNase como reações adversas e curta meia-vida, principalmente devido ao reconhecimento pelo sistema imune e degradação por proteases, limitam a sua eficácia. A encapsulação da enzima em lipossomas pode conferir proteção à degradação, melhorar seu perfil farmacocinético e diminuir os efeitos adversos, de forma a melhorar o tratamento da LLA sendo este o objetivo desse trabalho. Lipossomas de DOPC (1,2-dioleoil-sn-glicero-3-fosfocolina) e DMPC (1,2-dimiristoil-snglicero-3-fosfocolina) foram desenvolvidos empregando-se o método de hidratação do filme lipídico e diferentes protocolos de preparo contendo ou não diferentes concentrações de 18:0 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polietilenogicol)-2000] (DSPE-PEG). Os lipossomas produzidos foram utilizados para encapsular a ASNase e os sistemas contendo ou não ASNase encapsulada foram caracterizados por espalhamento de luz dinâmico (DLS), potencial zeta, microscopia eletrônica de transmissão (MET) e criomicroscopia de transmissão. Adicionalmente, foram avaliados a taxa de encapsulação e o perfil de permeabilidade das vesículas à L-asparagina. As análises de DLS mostraram que as nanoestruturas formadas empregando-se agitação magnética a partir de sistemas contendo 10% e 20% de DSPE-PEG possuem diâmetro hidrodinâmico menor (~ 25 nm a 60 nm) que os mesmos sistemas sem o fosfolipídio peguilado (~190 nm a 222 nm), demonstrando a relação entre a diminuição do tamanho e o aumento da quantidade de fosfolipídio peguilado e possível formação de estruturas micelares ou bicelares. O emprego de agitação em vórtex para hidratação do filme lipídico, adição do antioxidante -tocoferol e redução da concentração de DSPE-PEG (5% e 10%) levou à formação de sistemas com diâmetro hidrodinâmico maior, sendo esse protocolo e concentrações de PEG definidos como padrão. As análises de MET comprovaram a formação de lipossomas com diâmetro hidrodinâmico semelhante ao observado por DLS; com a utilização da criomicroscopia foi possível observar os lipossomas sem deformações. Os lipossomas de DMPC/DSPE-PEG 10% apresentaram maior permeabilidade à L-asparagina ao longo do tempo e, portanto, poderiam funcionar como nanoreatores, depletando o aminoácido da circulação. Estudos in vitro com células tumorais devem ser realizados e em seguida estudos in vivo, para confirmar este potencial


L-asparaginase (ASNase) is a first-choice drug, combined with other drugs, in therapeutic schemes to treat Acute Lymphoblastic Leukemia (ALL) in children and adolescents. ASNase catalyzes the hydrolysis of L-asparagine (Asn) in the bloodstream; since ALL cells cannot synthesize this amino acid, protein synthesis is impaired leading to leukemic cells death by apoptosis. In spite of its therapeutic importance, treatment with ASNase is associated to side effects, mainly hypersensitivity and immunogenicity. Another drawback refers to degradation by plasma proteases that altogether with immunogenicity shortens the enzyme half-life. Encapsulation of ASNase in liposomes, vesicular nanostructures formed by the self-aggregation of phospholipids, is an attractive alternative that possibly will protect the enzyme from plasma proteases, resulting on better pharmacokinetics profile. In this work, we prepared by thin film hydration liposomal formulations of the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1,2-dimyristoyl-sn-glycero-3- phosphocholine (DMPC) containing or not different concentrations of 18:0 1,2-distearoyl-snglycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG), and encapsulated ASNase by electroporation. The systems containing or not ASNase were analyzed by Dynamic Light Scattering, zeta potential and Electron Microscopy. The encapsulation efficiency and vesicles permeability were also evaluated. According to the DLS analysis, the nanostructures formed by film hydration under magnetic stirring employing 10% or 20% DSPE-PEG presented smaller hydrodynamic diameter (~ 25 nm to 60 nm) than the same systems without the pegylated phospholipid (~ 190 nm to 222 nm), demonstrating the relation between size and the amount of pegylated phospholipid that results in formation of micellar or bicellar structures. The protocol was stabilize by hydration of the lipid film under vortex agitation, addition of the antioxidant - tocopherol and reduction of the concentration of DSPE-PEG (5% and 10%), what altogether led to the formation of nanostructures of higher hydrodynamic diameter and monodisperse systems. TEM analyzes confirmed the formation of liposomes with hydrodynamic diameter similar to that observed by DLS; with the use of cryomicroscopy it was possible to observe the liposomes without deformations. Liposomes of DMPC/DSPE-PEG 10% showed permeability to L-asparagine over time and, therefore, could function as nanoreactors, depleting the circulating amino acid


Assuntos
Asparaginase/farmacologia , Lipossomos/análise , Asparagina/antagonistas & inibidores , Técnicas In Vitro/instrumentação , Preparações Farmacêuticas/análise , Microscopia Eletrônica/métodos , Microscopia Eletrônica de Transmissão/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Antioxidantes/efeitos adversos
15.
Sci Rep ; 11(1): 23831, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903749

RESUMO

The vagus nerve provides motor, sensory, and autonomic innervation of multiple organs, and electrical vagus nerve stimulation (VNS) provides an adjunctive treatment option for e.g. medication-refractory epilepsy and treatment-resistant depression. The mechanisms of action for VNS are not known, and high-resolution anatomical mapping of the human vagus nerve is needed to better understand its functional organization. Electron microscopy (EM) is required for the detection of both myelinated and unmyelinated axons, but access to well-preserved human vagus nerves for ultrastructural studies is sparse. Intact human vagus nerve samples were procured intra-operatively from deceased organ donors, and tissues were immediately immersion fixed and processed for EM. Ultrastructural studies of cervical and sub-diaphragmatic vagus nerve segments showed excellent preservation of the lamellated wall of myelin sheaths, and the axolemma of myelinated and unmyelinated fibers were intact. Microtubules, neurofilaments, and mitochondria were readily identified in the axoplasm, and the ultrastructural integrity of Schwann cell nuclei, Remak bundles, and basal lamina was also well preserved. Digital segmentation of myelinated and unmyelinated axons allowed for determination of fiber size and myelination. We propose a novel source of human vagus nerve tissues for detailed ultrastructural studies and mapping to support efforts to refine neuromodulation strategies, including VNS.


Assuntos
Fibras Nervosas Mielinizadas/ultraestrutura , Fibras Nervosas Amielínicas/ultraestrutura , Nervo Vago/ultraestrutura , Adulto , Feminino , Humanos , Limite de Detecção , Masculino , Microscopia Eletrônica/métodos , Microscopia Eletrônica/normas , Pessoa de Meia-Idade , Bainha de Mielina/ultraestrutura , Nervo Vago/metabolismo
16.
STAR Protoc ; 2(4): 100990, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34934959

RESUMO

Phosphatidylcholine (PtdCho) is a major membrane phospholipid synthesized in the endoplasmic reticulum. Here, we provide a protocol using electron microscopy to localize PtdCho that is newly synthesized by the Kennedy pathway in yeast cells. The protocol consists of the administration of a clickable alkyne-containing choline analog to cells, quick-freezing, freeze-fracture replica preparation, conjugation of biotin-azide by click chemical reaction, and immunogold labeling. This protocol can be used to determine quantitatively to which membrane leaflets newly synthesized PtdCho is incorporated. For complete details on the use and execution of this protocol, please refer to Orii et al. (2021).


Assuntos
Técnica de Fratura por Congelamento/métodos , Microscopia Eletrônica/métodos , Fosfatidilcolinas , Saccharomyces cerevisiae/ultraestrutura , Alcinos/química , Alcinos/metabolismo , Colina/análogos & derivados , Colina/química , Colina/metabolismo , Fosfatidilcolinas/análise , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
17.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884574

RESUMO

Extracellular vesicles (EVs) are gaining increasing amounts of attention due to their potential use in diagnostics and therapy, but the poor reproducibility of the studies that have been conducted on these structures hinders their breakthrough into routine practice. We believe that a better understanding of EVs stability and methods to control their integrity are the key to resolving this issue. In this work, erythrocyte EVs (hbEVs) were isolated by centrifugation from suspensions of human erythrocytes that had been aged in vitro. The isolate was characterised by scanning (SEM) and cryo-transmission electron microscopy (cryo-TEM), flow cytometry (FCM), dynamic/static light scattering (LS), protein electrophoresis, and UV-V spectrometry. The hbEVs were exposed to various conditions (pH (4-10), osmolarity (50-1000 mOsm/L), temperature (15-60 °C), and surfactant Triton X-100 (10-500 µM)). Their stability was evaluated by LS by considering the hydrodynamic radius (Rh), intensity of scattered light (I), and the shape parameter (ρ). The morphology of the hbEVs that had been stored in phosphate-buffered saline with citrate (PBS-citrate) at 4 °C remained consistent for more than 6 months. A change in the media properties (50-1000 mOsm/L, pH 4-10) had no significant effect on the Rh (=100-130 nm). At pH values below 6 and above 8, at temperatures above 45 °C, and in the presence of Triton X-100, hbEVs degradation was indicated by a decrease in I of more than 20%. Due to the simple preparation, homogeneous morphology, and stability of hbEVs under a wide range of conditions, they are considered to be a suitable option for EV reference material.


Assuntos
Difusão Dinâmica da Luz/métodos , Eritrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Microscopia Eletrônica/métodos , Eritrócitos/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Humanos
18.
Biochem Soc Trans ; 49(6): 2777-2786, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34812894

RESUMO

Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, pose an increasingly severe burden for individuals and society in an ageing population. The causes and mechanisms of the diseases are poorly understood and as yet there are no effective treatments. Some of the molecular complexes involved in degeneration have been identified and electron microscopy has provided an essential tool in the investigations. The focus of this review is to show how electron microscopy has contributed historically to the understanding of disease and to summarize the most striking current advances. It does not seek to cover in detail the recent technical developments in microscopy, involving better microscopes, better electron detectors and more powerful image processing techniques, which have made possible the new insights. In many instances pathological filament assemblies are associated with brain cells that die in the disease, causing the observed symptoms such as dementia or movement disorders. Using electron microscopy it is now possible to go beyond morphological descriptions to produce atomic structures of many of the filaments. This information may help to understand the seeding and assembly of the filaments, with the aim of finding small molecule inhibitors that could potentially provide a form of treatment for the diseases.


Assuntos
Microscopia Eletrônica/métodos , Doenças Neurodegenerativas/patologia , Humanos
19.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830352

RESUMO

Recent research has provided strong evidence that neurodegeneration may develop from an imbalance between synaptic structural components in the brain. Lately, inhibitory synapses communicating via the neurotransmitters GABA or glycine have come to the center of attention. Increasing evidence suggests that imbalance in the structural composition of inhibitory synapses affect deeply the ability of neurons to communicate effectively over synaptic connections. Progressive failure of synaptic plasticity and memory are thus hallmarks of neurodegenerative diseases. In order to prove that structural changes at synapses contribute to neurodegeneration, we need to visualize single-molecule interactions at synaptic sites in an exact spatial and time frame. This visualization has been restricted in terms of spatial and temporal resolution. New developments in electron microscopy and super-resolution microscopy have improved spatial and time resolution tremendously, opening up numerous possibilities. Here we critically review current and recently developed methods for high-resolution visualization of inhibitory synapses in the context of neurodegenerative diseases. We present advantages, strengths, weaknesses, and current limitations for selected methods in research, as well as present a future perspective. A range of new options has become available that will soon help understand the involvement of inhibitory synapses in neurodegenerative disorders.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Neurônios/ultraestrutura , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/diagnóstico por imagem , Sinapses/ultraestrutura , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Esclerose Amiotrófica Lateral/diagnóstico por imagem , Esclerose Amiotrófica Lateral/tratamento farmacológico , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Levodopa/uso terapêutico , Memantina/uso terapêutico , Microscopia Eletrônica/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurotransmissores/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Tetrabenazina/uso terapêutico
20.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830349

RESUMO

Research in biomedical sciences has changed dramatically over the past fifty years. There is no doubt that the discovery of apoptosis and autophagy as two highly synchronized and regulated mechanisms in cellular homeostasis are among the most important discoveries in these decades. Along with the advancement in molecular biology, identifying the genetic players in apoptosis and autophagy has shed light on our understanding of their function in physiological and pathological conditions. In this review, we first describe the history of key discoveries in apoptosis with a molecular insight and continue with apoptosis pathways and their regulation. We touch upon the role of apoptosis in human health and its malfunction in several diseases. We discuss the path to the morphological and molecular discovery of autophagy. Moreover, we dive deep into the precise regulation of autophagy and recent findings from basic research to clinical applications of autophagy modulation in human health and illnesses and the available therapies for many diseases caused by impaired autophagy. We conclude with the exciting crosstalk between apoptosis and autophagy, from the early discoveries to recent findings.


Assuntos
Apoptose/genética , Fator Apoptótico 1 Ativador de Proteases/genética , Autofagia/genética , Proteínas de Caenorhabditis elegans/genética , Caspases/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Animais , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspases/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica , História do Século XX , História do Século XXI , Homeostase/genética , Humanos , Microscopia Eletrônica/história , Microscopia Eletrônica/métodos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...